MATH 102:107, CLASS 16 (FRI OCT 13)

(1) (Constrained optimization - Kepler's wedding) A cylindrical wine barrel has a hole in the center of one side. When a rod is put into this hole and reaches the furthest into the barrel that it can go, it reaches a distance of L. Given this constraint, find the radius r and height h which maximize the volume of the barrel.

(2) (Constrained optimization) A box of height 1 m and depth 3 m is placed against a wall. A straight ladder must go over the box and lean against the wall. What is the shortest possible length of the ladder?

(3) (Constrained optimization) Baculovirus is a cylindrically-shaped cell which must hold a certain amount of genetic material, and therefore has fixed volume 54000π $n m^{3}$. Find the radius and height which give the cell the minimal possible surface area.
(4) (Unconstrained optimization) Let x measure the population of aphids in a garden. The reproduction rate of aphids is $G(x)=3 x$ and the rate of predation by ladybugs is $P(x)=\frac{30 x}{5+x}$. Is there a value of $x>0$ for which the net growth rate is minimized? At which it is maximized? For each, either find the value of x, or explain why none exists.
(5) (General problem solving) Let $f(x)=4-x^{2}$. Calculate the equation of the line(s) passing through $(5 / 2,0)$ tangent to the graph of $y=f(x)$.

